NASA Operational
Simulator for Small Satellites

/0033

User Manual

Independent Verification and Validation (IV&V)

NASA V&V Point of Contact
100 University Dr, NOS? Support

Fairmont, WV 26554 support@nos3.or
304.367.8200

mailto:support@nos3.org

nos

NOS3 Developer's Manual

Table of Contents

1 1T (oo 1T 4
1.1 BACKGIOUNG. ..ottt bbb bbb s e e s bbb b s bbb b et st sttt bt 4
1.2 0 0 ST 5

2 L0 S o311 T o - 6

3 NOS ENQINE ...vvirieeccssssssese e sessss s s sssssss e se e s s s ssssssesess s ssssssssesesesesssssssessssese s s s ssssssssesesssssssssmssssnsesssssssnsnsnes 7

4 LT o TE LT (= T 8
41 AMMOS InStrumMENt TOOIKIE (AlT).......cucueieieiiiiiiecctee ettt bbb bbb ss e bbb b s e 8
4.2 L0700 TP TTSTTR 9
43 Command Telemetry LINK UD ...t 9

5 Quick Start to Installing, Building, and Running NOS? ... sssesesens 10
5.1 INSEAIING NOS? ... bbbt 10
5.2 BUIIAING NOS3 ... 11
5.3 RUNNING NOS3 WIt AIT ..ot 12
54 RUNNING NOSB With COSMOS ...ttt bbbttt bbb 12

6 Detailed Installation and Virtual Machine Creation Steps.........cccorrncnnnnnnss s ssssssses 15
6.1 The Vagrantfile @A PrOCESSc.cviiiiiiiriieisiiese bbb 17

G O V- To = L o (1o 3OS 17
6.1.2 Base Virtual Maching Configurationcccccerriiiiiiiccee e 17
6.1.3 Provisioning the Virtual MAChINEccceeeiieircc st 18
6.1.4 ConClusion aNd REFEIENCESc.cuiiiiiiiriicirir e 19
6.2 HOSE INSTAIATION ...t 19

7 Building NOS® Components: Flight Software and Simulators............coounn . 20
71 DEtailed BUId STEPS ..ot r bbb bbb bbbttt bbb bbb 20
7.2 THE BUIIA SCHIPE ..ttt ettt ettt ettt bt eten 23

8 Running NOS?: Standalone Server, Simulators, 42, Flight Software, and COSMOS............cccocovrmmmmrenesesssnsnenes 25

9 NOSS WOTKFIOWS......oeuirissessssississsissssssiss s sesssss s bbb 32

10 Hardware Simulator Framework / Example Simulator...........cccoorrncnmsssmmnensessssssssssesesesssssssssssssesessssssssssees 34
10.1 Background and SUPPOrtiNG CONCEPEScuvuiirurireieieieiree s 34

10.1.1 Abstract Factory Design Patlern ..o s 34
1012 XML CONfIGUIALIONviiieciiiei ettt 34
10.2 Implementing Your Own Hardware Model (and Data Provider, and Connections)...........ccccovevniennecenncnnineenn. 34
10.2.1 Configuration Data Property TIEEc.curueeieeieieserssrs sttt 35
10.2.2 HArAWAre MOGEL........c.cuiiiieieiee bbb 36
10.2.3 DAt PrOVIAEN ...ttt 36
10,24 CONNECHONS ...ttt bbbttt 36
10.3 WIiting YOUF OWN SIMUIALOTvviiiiieiicieisce ettt 39
104 EXGMPIE SIMUIBTOT......oiiectctetee ettt bbb bbbt b s bbbt b bt s e sttt b 41

1" 42, A Visualization and Simulation Tool for Spacecraft Orbit and Attitude Dynamics...........oourennnnresnssrensans 42
1101 B2 OVEIVIBW ...t 42
11.2 Providing Data to @ SIMUIAIOr fTOmM 42........c.ooiiierie b 43
11,3 COONAINGLING 42 TIME ..ottt 43
114 Data Available fTOM 42 ...t bbbttt n bbb 44

12 Flight Software Development, Especially USing CFS ... 45
121 CFS ANA NOSE ... 45

1211 Operating System ADSIrCION LAYET..........ccoiuriiirieirieireisesese e 45
1212 Platform SUppOrt PACKaGEc.oviuriiiiieeecc s 45
1213 HAIAWATE LIDFAIY ..o 45
122 CoNNECHNG CFS 10 NOSS ...ttt 46

NOS3 Developer's Manual L d
12,3 NOSBDrivers and Other FSW ..ottt ettt b 47
12.3.1 WHItING @ NOSB DFIVET ...ttt 47
13 Hardware [N THe LOOPccuieccnrnrrinismmsssssssssesessssssssssssessssssssssssssssesessasssssssssssesssssssssssssssesessasssssssssesnssssssssnsnes 50
13.1.1 ABIAVAIK ...ttt 50
1312 BUS PIrALE...coeceecee bbbttt 50
13,13 FTDICADIE ...t e bbb et bbb r e s bbb e e e 50
1314 RASPDEITY Pttt 50
13.1.5 RUNNING the CONNECIOS.......cveieiiiieiisee ettt 51
14 Orbit, Inview, and Power Planning TOOL........ccccccommrmncsesnssnmssesesesssssssssssssesessssssssssssssssssssssssssssssessssssssssssssssesens 52

Page | ii

NOS

NOS3 Developer's Manual

Table of Figures
Figure 1 - NOS3 ArChIt@CIUIEcccccirirererccsese e s s s s e e e e e e p e 6
a0 U= N 0T] - | 8
a0 U= B L T Vo (o o 9
Figure 4 — COSMOS SeNAEr TOOL........ccourererereresmnnrirresesesesssssssssssesessssssssssssssssssssssssssssesesssssssssssssssesssssssssssssssesessssssssssssssenens 10
Figure 5 - COSMOS CFS COMMUNICAtIONcuveuiriiissrisssisiss s 10
Figure 6 - NOS3 Virtual Maching COMPIELe ... sssssss s sssssesessssssssssssssessssssssssssssssesens 11
Figure 7 - Building Simulators and Flight Software.............ccvn s ———— 12
Figure 8 - NOS3 Running - Server, Sumulators, 42, Flight Software, COSMOS.............cccconmmmmnnnnmensssssseseseens 13
Figure 9- COSMOS Command Sending - Enabling TelEmEtry ..o ssssssssssessssssssssssssssesens 13
Figure 10 - COSMOS Command and Telemetry Server - Showing "Bytes Tx", "Bytes RX"ccocvnrninnnsinncssnsennnns 14
Figure 11 - COSMOS Command and Telemetry Server - Selecting "View in Packet Viewer" for "NOS3_NAV_MSG"....14
Figure 12 - COSMOS Packet Viewer - NOS3_NAV_MSGccorommnmmisssssssssssssssssssssssssssssssssssssessssssssssens 15
Figure 13 - INitial DESKEOP.vvicccccrrrerrrr s e e e e e e e s R e e ne e R e e 17
Figure 14 - Ubuntu LinuX DeSKEOP GrEELErcciirrerercissmsrniisesessss s ssssssesessssssssssssssssssssssssssssssessssssssssssssssesens 20
Figure 15 - Double click "first-n0s3-build.Sh" ... ———————— 21
Figure 16 - NOS3 Building: CMake EXECULIONccceeeeeienmnnrnincsessss s sssss s s sssssessssssssssssssssessssssssssssssssesens 22
Figure 17 - NOS3 Building: Make and Install the Flight Software............ccovvinn————— 22
Figure 18 - NOS3 Building: Make and Install Simulators............c.cccovnnnnnnnsnnscsese s sssssesens 23
Figure 19 - Ubuntu LinuX DeSKEOP GrEELEr ... s ssssssesessssssssssssssssssssssssssssssessssssssssssssssesens 25
Figure 20 - Double Click "N0S=3-FUN.Sh" ..o s 26
Figure 21 - NOS Engine Standalone SEIVEr ... sssssssssssssssssssssesssssssssssssssesens 27
Figure 22 - 42 DynamiC SIMUIALON. ... s 28
FIgure 23 - COSIMOS ... e e e s e e e e e AR A eE e e e R A e eE e e e e R nEn s 29
FIgUure 24 - SIMUIALOTSccoiiieiiiecccsrese s ss s s e e e e AR E e e R e 30
Figure 25 - NOS3 Flight SOftWArecoccunmmmmisss s ssessases 31
Figure 26 - Shared Folder SEttNGS.........ccurumnminmnmiisss s ssesanes 32
Figure 27 - Share in NOS3 FOIE ..o s 33
Figure 28 - Flight and Simulation Targets...........ouisss s sssssases 46
Figure 29 - EXample OIPP REPOItcoovererercrmsesrsrsesesesesssssssssssesessssssssssessssssssssssssssssesssssssssssnssesssasssssssssssesessassssssssssssnnens 52

Page | iii

nos’

NOS3 Developer's Manual °

1 Introduction

This document, titled “NOS® User Manual”, provides information for users and developers that intend to
enhance and extend the NASA Operational Simulator for Small Satellites (NOS3).

1.1 Background

The NASA Independent Verification and Validation (IV&V) Independent Test Capability (ITC) team developed
West Virgina’s first satellite, named Simulation-to-Flight 1 (STF-1), which is a 3U Small Satellite. The primary
goal of this Small Satellite was to develop and demonstrate the lifecycle value of a software-only small
satellite simulator. This simulator is called the NASA Operational Simulator for Small Satellites or NOS3.

NOS? is an open-source, software only test bed for small satellites available via the NASA Open Source
Agreement. Itis a collection of Linux executables and libraries. Current simulations are based on commercial
off the shelf (COTS) hardware that were developed to support the STF-1 CubeSat. It is intended to easily
interface with flight software developed using the NASA Core Flight System (cFS).

NOS? executes on a Linux virtual machine and is comprised of a number of components. These components
are listed in the following table.

Oracle VirtualBox Oracle VirtualBox is an open source solution for creating and running virtual
machines.
Vagrant Vagrant is an open source solution that can be used to script the creation of Oracle

VirtualBox virtual machines and the provisioning of such machines, including
package installation, user creation, file and directory manipulation, etc.

NOS Engine NASA Operational Simulator (NOS) Engine is a NASA developed solution for
simulating hardware busses as software only busses. This component provides
the connectivity between the flight software and the simulated hardware

components.
Simulated Hardware The third component is a collection of simulated hardware components which
Components connect to NOS Engine and provide hardware input and output to the flight
software.
42 Some of the hardware components require dynamic environmental data. 42 is an

open source visualization and simulation tool for spacecraft attitude and orbital
dynamics developed by NASA Goddard Space Flight Center (GSFC) which is used
to provide dynamic environmental data.

cFS NASA Core Flight Software (cFS) is used as the base system which STF-1 flight
software is developed on top of.

AIT Is a light weight open source ground system developed by JPL that provides
command and control to the flight software.

COSMOS COSMOS is open source ground system software developed by Ball Aerospace

which is used to provide command and control of the flight software.

Page | 4

NOS

NOS3 Developer's Manual

OIPP Orbit, Inview, and Power Planning (OIPP) is an ITC developed planning tool which
can use current two line element (TLE) sets from the internet or a TLE file to project
satellite to ground station inview times and satellite eclipse and sunlight times.

CFC The COSMOS File Creator (CFC) allows for the generation of command and
telemetry files from FSW, barring it contains the proper comments to be parsed.

1.2 Format

The format of this document is as follows. Section 2 describes the overall architecture of NOS3, including the
component architecture and how the components communicate with each other.

Section 3 describes NOS Engine and how it is used by developers to provide the software bus interface
between flight software and simulated hardware.

Section 4 describes the AIT and COSMOS ground systems and how they can be used to interact with the
sample telemetry output (TO_Lab) application and sample command ingest (Cl_Lab) application that are
provided with cFS.

Section 5 is a quick start guide with a minimum set of procedures for creating the NOS? virtual machine,
building the flight software and simulator components on the NOS? virtual machine, and running the NOS
engine standalone server, simulators, 42, flight software, and COSMOS in order to have end to end command
and control, flight software execution, and simulation.

Section 6 provides detailed instructions for creating the NOS? virtual machine and describes the steps that
occur in the Vagrantfile to configure and provision the virtual machine.

Section 7 provides detailed instructions for building the flight software and simulations on the NOS?3 virtual
machine.

Section 8 provides detailed instructions for running the NOS engine standalone server, simulators, 42, flight
software, and COSMOS and describes the various components that are automatically started using the quick
start script.

Section 9 elaborates on the various types of NOS® workflows that exist. This includes setting NOS? for editing
and using version control on your host or inside of the VM.

Section 10 describes the framework for developers to use to develop hardware simulators and provides
information on example simulator code included with NOS3.

Section 11 describes the 42 visualization and simulation tool for spacecraft attitude and orbital dynamics
which is used to provide environmental data to those simulators that need it to provide realistic data.

Section 12 describes developing flight software using cFS and interfacing it with NOS engine and the
simulators.

Page | 5

nos’

NOS3 Developer's Manual

Section 13 explains the hardware in the loop capabilities while expanding on the installation and use for each
platform.

Section 14 describes the Orbit, Inview, and Power Planning (OIPP) tool. This tool is not part of the end to end
command and control simulation suite of NOS? that can be used during flight software development, but
provides a planning tool for use in preparing for, testing, and executing mission operations.

2 NOS3 Architecture

Figure 1 shows the architecture of NOS3. To get started with NOS3, a NOS? user only needs to install Oracle
VirtualBox and Vagrant on their host computer. Both of these software packages are open source and can
be run on various operating systems, including Microsoft Windows, Apple OS X, and Linux. In addition to
those software packages, NOS? is comprised of a collection of files that are stored in a git repository. To get
started with NOS3, the user receives a copy of those files and places them on their computer. These files
include a Vagrantfile, which is a file that is used by the Vagrant software package to create an Ubuntu Linux
Virtual Machine where all of NOS? is run. During creation of the Ubuntu Linux Virtual Machine, various
software packages could be installed including AIT, COSMOS, 42, and the NOS Engine libraries and NOS
Standalone Server. An alternative to starting with Vagrant is to receive an already generated VirtualBox
Virtual Machine with the various packages installed or utilize the same provisioner script on an Ubuntu 16.04
virtual machine / host; however, to build and run the core flight software, simulators, and so on, the source
code will still need to be present as describe below.

Computers
Processes

NOS

]
F
)| Ciloc /rammimicatio Standalone
W
% TCP/IP _
Flight GPS Sim
Software
GROUN (cFS) CAM
D Sim - 42
STATIO \
N

Virtual Machine Computer Jvagrant_parent/.
= Ubuntu Linux 16 (Xenial) Synced_Folders
Host Computer (Windows/Mac/Linux/...) \y—

Oracle VirtualBox / Vagrant
O

Figure 1 - NOS3 Architecture

Page | 6

NOS

NOS3 Developer's Manual

Finally, source code for various simulators is present on the virtual machine through synced folders which
allow access to the same files on the host computer and the virtual machine computer. Build tools can be
used on the virtual machine to build and install these simulators, such as a GPS and camera. In addition, two
special software tools are built and installed as part of the simulators. The first is a NOS time driver which
provides time ticks to drive time for the various simulators, 42, and the flight software. The second is a simple
terminal program which can be used by the operator to command and control other simulators using a
separate NOS engine command bus which all of the simulators can be nodes on.

In addition, the cFS source code is also present on the virtual machine through synced folders. Build tools
can be used to build and install the generic flight software also. This flight software includes hardware
libraries that can interface as nodes on NOS Engine busses in place of the real hardware node and bus
connections.

As shown in Figure 1, TCP/IP or files can be used to provide environmental data from 42 to the various
simulators. In addition, TCP/IP can be used to interface COSMOS with laboratory versions of command and
telemetry applications in cFS. Finally, the NOS Engine libraries are used to provide the software busses and
nodes for communication between the flight software and the simulated hardware and for distribution of
simulation time.

3 NOS Engine

NOS Engine is a message passing middleware designed specifically for use in simulation. With a modular design,
the library provides a powerful core layer that can be extended to simulate specific communication protocols.
With advanced features like time synchronization, data manipulation, and fault injection, NOS Engine provides a
fast, flexible, and reusable system for connecting and testing the pieces of a simulation.

NOS Engine is built on a conceptual model based on two fundamental types of objects: nodes and buses. A
node is any type of endpoint in the system, capable of sending and/or receiving messages. Any node in the
system has to belong to a group, formally referred to as a bus. A bus can have an arbitrary number of nodes,
and each node within the bus must have a name that is unique to all other member nodes. The nodes of a bus
operate in a sandbox; a node can communicate with another node on the same bus, but cannot talk to nodes
that are members of a different bus.

Within NOS3, NOS Engine is used to provide software simulations of the hardware buses. It provides the
infrastructure for each hardware simulator to be a node on the proper bus and for the flight software to interact
with the hardware simulator nodes on the appropriate bus. NOS Engine provides plug-ins for various protocols
such as MIL-STD-1553, SpaceWire, 12C, SPI, and UART. These plug-ins allow each bus and the nodes on the bus
to communicate using calls and concepts that are specific to that protocol.

For more information on the concepts, architecture, specific bus protocols supported, and other information on
using NOS Engine, please refer to the NOS Engine User’s Manual.

Page | 7

NOS3 Developer's Manual L d

4 Ground Systems

NOS3 supports two ground systems out of the box - AIT and COSMOS.
4.1 AMMOS Instrument Toolkit (AIT)

The AMMOS Instrument Toolkit is a Python-based software suite developed by JPL to handle Ground Data
System (GDS), Electronic Ground Support Equipment (EGSE), commanding, telemetry uplink/downlink, and
sequencing for JPL International Space Station and CubeSat Missions.

If AIT is the ground station utilized, the project repository is installed under the AIT directory and a python
virtual environment is also created during installation. The default AIT installation is under the “ait” virtual
environment and a CFS specialized project is installed under the “ait-cfs” virtual environment. If the user
wants to create their own Ground Station using AIT use the ait virtual environment. In this document the AIT-
CFS that is installed in the “ait-cfs” virtual environment in used. AIT web interface is pictured below.

Commanding " d y Executive Services (ES|

Send Command: Cmd Counter: 2 Error Counter: 0
o Core 3

Min
Missi

0 0SA ion:
OSAL Mi 2 OSAL Revision: 1
OSAL Mission Rev: 0 Syslog Bytes Used: 1867
Syslog Size: 4096 Syslog Entries: 27
Syslog Mode: Discard ER Log Index: 1
ER Log Entries: 1 Registered Core Apps Count: 5
Registered CFS Apps Count: 6 Registered Tasks Count 14
Registered Libs: 2 Reset Type: PowerOn
T0 Reset Subtype: PowerCycle Processor Resets: 0

s: 2 Boot Source: BootSource1
Idle Perf Mon Mode: TriggerStart

ES

0 Heap Bytes Free: 0
0 Head Max Block Size: 0

2 L Pom——

2035 20:40 20:45 2050 2055 21:00 2105

Time
— CommandCounter

Figure 2 - AIT Display

Page | 8

NOS3 Developer's Manual °

4.2 Cosmos

COSMOS is an open source ground system provided via Ball Aerospace! and is included with NOS3 to provide
an alternate ground station to the simulated spacecraft. COSMOS will also act as the official ground station
for STF-1 at the Wallops Flight Facility providing the option to train operators.

Packet Viewer : Formatted Telemetry with Units

Edi Terminal Help
EVS Portl 55/1/TO_LAB_APP 1: TO Lab Initialized. Version 2.1.6.6 Awaiting enable
===] command. Interfaces Targets Cmd Packets Tim Packets Routers Logging Status
B EVS Port1 ss/l/HK 1: HK Initialized. Version 2.4.0.0 STF1 CFE_EVS_ILMPKIT 35 View Raw | View in Packet Viewer
3:2 ES Startup: SC loaded and created
ES Startup: Loading file: /cf/fm.so, APP: FM STH
ES Startup: FM loaded and created STF1
2015-012-14:0, ES Startup: Loading shared library: /cf/libstfhw.so
E EVS Portl 55/1/FM 104: Free Space Table verify results: good entries = 3, bad = STF1

File Edit Help

View in Packet Viewer

0
35

CFE_HK_COMBINED_PKT1 View Raw

View Raw | View in Packet Viewer

CFE_SB_HKMSG

CFE_TBL_HKPACKET 35 View Raw || View in Packet Viewer

o, unused = 5 STF1

EVS Portl 55/1/FM 1: Initialization completigy Packet Viewer : Formatted Telemetry with Units
6 EVS Portl 55/1/FM 160: Child Task initializ STF1

35 View in Packet Viewer

35

View Raw

CFE_TIME_HKPACKET
CFE_TO_LAB_HKTLMPKT

View Raw | View in Packet Viewer

EVS Portl 55/1/SC 21: RTS table file load ¢ File View Help —
EVS Portl 55/1/SC 9: SC Initialized. Versid

EVS Portl 55/1/CFE_EVS 1: STF-1 HWLIB Init STF1
EVS Portl 55/1/CFE_EVS 1: GPS Lib HW Init JEESNERRSwe) - | Packet: | STF1_NAV_MSG
EVS Port1 55/1/CFE_EVS 1: SEN Lib HW Init Ji =

0 View Raw | View in Packet Viewer

STF1_EPS_MSG

14 View Raw || View in Packet Viewer

STF1_NAV_MSG

2016/05/25 15:21: 16 636 ERROR: CFS_INT - Unknown 308 byte packet starting: 08C0C02A012DC2470F005F4500002
F3A14

e A A T D cscription: Navigation Application Housekeeping Telemetry Message 1
2015-012-14:03:20. ES Startup: Loading 2016/05/25 1521: 26,164 ERROR: CFS_INT- Unknown 42 byte packet starting: 0878C02B0023CB470F005SDF6000000
2015-012- 5 ES Startup: ttem alia 0000000000000000000000A005004270081843A80C) =D
|2015-012- .47022 ES Startup: 2016/05/25 15:21: zs 658 ERROR: CFS_INT - Unknown 308 byte packet starting: 08C0C02B012DCC470FO0FC5700002 8
Bl ot 1464189696.235327 00 19F Limits
2015-012- : ES Startup: i 2016/05/25 15:21:36.235 2016/05/25 15:21: 36227 ERROR: CFS_INT- st byte packet starting: 0878C02C0023D5470F00FAFA000000 ki
2615-012- 3 ES Startup: 3 0000000000000000000000A005004270081843A80C
2815-612- & ES Startup: 1 2016/05/25 15:21:36.669 ERROR: CFS_INT - Unknown 308 byte packet starting: 08C0C02C012DD6470F00B55800002
BWl| 2015-012-14:03:20.49495 ES Startup: C J 2160 j 00 AD 19F3A141
u EVS Portl 55/1/MGR 4: MGR: RESET Counters (49196
EVS Portl 55/1/MGR 1: MGR Initialized. Verd = R
EVS Portl 55/1/NAV 1: NAV Initialized. Verd Vv 7 S
EVS Portl 55/1/CAM 4: CAM App: RESET Countd 1001429 [cosvos]ilfe cosmvos]
: CAM App Initialized. 64858 File Mode Help Command script Test
6.49783 ES Startup Sender Runner Runner
49855 ES Startup i 0 Target: |STF1 +| Command: |ENABLE_TELE = [Send
.51053 ES Startup: i 44 Telemetry
:03:20.51163 ES Startup: CADET Description: Tell STF1 TO to start sending telemetry . (-
EVS Portl 55/1/SEN 4: SEN: RESET Counters (Ralisilesilid |:= E o h—]
EVS Portl 55/1/SEN 1: SEN App Initialized. \ n 1.0.0.0 Parameters: O . =1
CADET subscribed to 16 packets for HI priority FIFO Name Value o State Units sscr =D 8 cosvosJifa coswos]
<CADET subscribed to 3 packets for LO priority FIFO o i oy D
EVS Portl 55/1/CADET 4: CADET: RESET command Fackel | Blemeby Rlametiy: - pe
w L3C Lib: Open USART port 1 GMD_ID: 5272 Cony P
Lib: Install USART callback for Cadet Utilities
Port1 55/1/EPS 1: EPS Initialized. Version 1.6.0.0 SEQUENCE: 49152 seq| |-
: CADET App Initialized. Version 1.6.0.6 - = i ~ 5 s s
2015-012-14:03:20.62305 ES Startup: CFE_ES_Main entering OPERATIONAL state Command History: (Pressing Enter on the line re-executes the command) ™™ cﬁo
EVS Portl 55/1/CFE_TIME 21: Stop FLYWHEEL cmd("STF1 ENABLE_TELEMETRY with CMD_ID 6272, SEQUENCE 49152, - A -
EVS Portl 55/1/SCH 21: Major Frame Sync too noisy (Slot 1). Disabling synchroniz SIZE 17, COMMAND_CODE 6, DATA '127.0.0.1") D D (D T
ation. Telemetry Command Handbook Table
@ EVS Portl 55/1/SCH 18: Multiple slots processed: slot = 4, count = 2 Extractor Extractor Creator” Manager

EVS Portl 55/1/TO_LAB_APP 3: TO telemetry output enabled for IP 127.0.0.1

cmd("STF1 ENABLE_TELEMETRY with CMD_ID 6272, SEQUENCE 49152, ¢

Figure 3 - AIT in Action

4.3 Command Telemetry Link Up

This link to the Ground Station is able to be completed due to two applications included in cFS. These are
the command ingest (Cl_Lab) and telemetry output (TO_Lab). The reason they are lab apps is due to the fact
that they utilize UDP to communicate and are not meant for flight operations. The TO link is closed by default
on start-up, but can be activated using a specific command packet. This is done by using the Command
Sender tool in COSMOS. A special target was created named ‘NOS3’ with a single command to
‘ENABLE_TELEMETRY’. Once sent, the TO_Lab app will reply stating that telemetry is enabled. This is
demonstrated in the screenshot below. It should be noted that only telemetry listed in the
‘to_lab_sub_table.h’ will be captured. Additional telemetry can be appended as necessary.

1 Http://cosmosrb.com/

Page | 9

http://cosmosrb.com/

NOS3 Developer's Manual *

Command Sender

File Edit View Search Terminal File Mode Help
EVS Portl 55/1/NAV 1: NAV
2015-012-14:03:20.34770 ES ENC=REY)
2015-012-14:03:20.35146 ES

PG RSN PR E SR ML EY LIS Description: Tell STF1 TO to start sending telemetry
2015-012-14:03:20.35370 ES

2015-012-14:03:20.35523 ES [EECIERIECES

EVS Portl 55/1/SEN 4: SEN:

< | Command: | ENABLE TELEMETRY 2 Send

- - Name Value or State Units Description
EVS Portl 55/1/SEN 1: !
EVS Portl 55/1/CAM 4: / CMD_ID: 6272 Command Packet ID
EVS Portl 55/1/CAM 1: 5 SEQUENCE: 49152 Sequence word
CADET subscribed to 10 pac
CADET subscribed to 3 packs SIZE: 17 Size of packet data

EVS Portl 55/1/CADET 4: CA

BT RG] T Y- R gl -1 i Command History: (Pressing Enter on the line re-executes the command)

BT RN OIS IR RV AR ENN d("STF1 ENABLE_TELEMETRY with CMD_ID 6272, SEQUENCE 49152, SIZE 17,
ANl S BELYAVIL SR S LA COMMAND_CODE 6, DATA '127.0.0.1")

EVS Portl 55/1/CADET 1: CA
2015-012-14:03:20.46444 ES
EVS Portl 55/1/CFE_TIME 21
EVS Portl 55/1/SCH 21: Majé®
ation.

EVS Portl 55/1/SCH 18: Multiple slots processed: slot = 74, count = 2
EVS Portl 55/1/TO_LAB_APP 3: TO telemetry output enabled for IP 127.08.8.1

cmd("STF1 ENABLE_TELEMETRY with CMD_ID 6272, SEQUENCE 49152, SIZE 17, COMMAI

Figure 4 — COSMOS Sender Tool

All communications to, from, and internal to cFS are formatted using the CCSDS standard packet type with
the secondary header enabled. This secondary header allows the specific command to be passed to the
application specified in the primary header. COSMOS requires knowledge of these commands and telemetry
structures to be able to construct and interpret them as needed. An example is provided below:

UM & TINT NI
UINT MIN TII

Figure 5 - COSMOS cFS communication

5 Quick Start to Installing, Building, and Running NOS3

5.1 Installing NOS3

On the host computer: =
1. Install Oracle VirtualBox v5.1 + (https://www.virtualbox.org/) X%
2. Install Vagrant v1.9+ (https://www.vagrantup.com/) \i
3. |Install Git 1.8 + (https://git-scm.com/downloads/) 3

Page | 10

https://www.virtualbox.org/
https://www.vagrantup.com/
https://git-scm.com/downloads/

nos’

NOS3 Developer's Manual

4. Acquire the nos3 release repository via clone. &
5. Initalize git submodules for use:

a. git submodule init
6. Update git submodules:

a. git submodule update

7. Navigate to /mission/support

8. Configure the Vagrantfile in the support directory:

a. Inthis file you can choose the configuration settings for the installation:
i. Operating Systems are CentOS(1) and Ubuntu(2)
ii. Ground Systems are AIT(1) and COSMOS(2)
iii. Installation Levels are Minimal(1), Full(2), and Development(3)

9. Run the command vagrant up via a command prompt within the /mission/support directory, and wait for
the command to return to the prompt. — This can take anywhere from 20 minutes to hours depending on
internet speeds and the specs of the host PC.

10. Vagrant will automatically reload the machine, and it will be ready for use.

11. Login to the nos3 user using the password nos3123!/

File Machine View Input Devices Help

B = o 354pm 3

nos3-run.sh

nos3-stop.sh

stf1-oipp-demo.sh

B &P E = @ O @ [© riohtcyl
Figure 6 - NOS3 Virtual Machine Complete

5.2 Building NOS3
Log in to the NOS3 VM: nos3 /nos3123!
1. Double click “nos3-build.sh”
2. A terminal window will come up and build the simulator and flight software (this will take quite a few

minutes)

Page | 11

NOS3 Developer's Manual

File Machine View Input Devices Help

(En| 4) 3:55PM Lt

uild/ Tinux

/home/nos3/nos3/tool s/cFS—GroundSysten/Subsystens/cadUti1/sendidp.c: In

“Sendldp”
/nos3/nos3/tools/cFS—GroundSysten/Subsystens/cadUtil/sendUdp.c164:12:
1

it ion ‘atoi’ [-Wimplicit-func

nos3-run.sh

nos3-stop.sh

stf1»oipp-<-!emo.sh

BFPE™E @ G @ Rty
Figure 7 - Building Simulators and Flight Software

5.3 Running NOS® with AIT

1. Double click “nos3-run.sh”. The following software will start up:

a. NOS Engine Standalone Server (1 terminal window)

b. 42 Dynamic Simulator (1 terminal window, 1 GUI window with CubeSat, 1 GUI window with
map)

c. AIT (1 terminal window with two tabs, 1 google chrome window)
Simulators (1 terminal window with a tab for each simulator, including the NOS Time Driver and
the Simulator Terminal)

e. STF1 Flight Software (1 terminal window)

5.4 Running NOS2with COSMOS

1. Double click “nos3-run.sh”. The following software will start up:

a. NOS Engine Standalone Server (1 terminal window)

b. 42 Dynamic Simulator (1 terminal window, 1 GUI window with CubeSat, 1 GUI window with
map)

c. COSMOS (GUI windows for Legal Agreement, COSMOS Command and Telemetry Server — STF1
Configuration, Command Sender, Launcher)

d. Simulators (1 terminal window with a tab for each simulator, including the NOS Time Driver and
the Simulator Terminal)

e. STF1 Flight Software (1 terminal window)

Page | 12

NOS3 Developer's Manual °®

File Machine View Input Devices Help

412PM 3%

Command: [IMU_CMD_MODE S 3| | Send

Data Nodes:
Bus i2c_2: bas
30

Units Description

120 Experiment run time (seco...

 on the line re-executes the command)

- 10
Bus command: bag
- spw-command-n
- antenna-comma
- terminal

Bus usart_1: ua

BytesTx BytesRx Cmd

* 1 6 5 5 PEBUG] - 9 o 0
N I 11110 111111 : = b et SO i e o C 14516
+ NN NN 110 RN | R DR IR (CRD) SRR G
DEBUG] - MagnetometerSimHardwareModelHMC5843: :dete
Returned data: 0x00 0x00 Ox00 Ox00 Ox00 Ox00

. DEBUG] - I2CSlaveConnecti: 2c_read: ©0x00 0x00

]]]1]]]]]]]]]]] 1]]]]]] ECICHER ST]]]1] 6-12-05 3 DEBUG] - I2CSlaveConnection::i2c_write:
1111111111111 111111 111111 DEBUG] - MagnetometerSimHardwareModelHMC5843: :dete
i : in_data parameter: ©x03 P
2016-12-05 - DEBUG] - MagnetometerSimHardwareModelHMCS843: :dete
rmine_response_f : in_data parameter translates to in_mode:
2016-12-05 16:12 DEBUG] - MagnetometerSimHardwareModelHMC5843: :dete
rnine_response_for_r : hnc5843_read (data->x,y,z) should give: 0.000000,

1

esktop/cosmos/outputs/logs/2016_12_05_16_09

©.000000, O

A T e [2016-12-65 16:12:39. DEBUG] - MagnetometerSimHardwareM QLA
| e et Heln rmine_response_f :_ Returned data: 0x60 0X00 6X08 OX |
ipbnles sosnnks 2016-12-05 16: 24 DEBUG] - I2CSlaveConnection::i2c_ SlMs
%xoa X80 6X00 0x00

: Default Spacecraft ID = 55
: Default CPU Name: Llinux

BPEEE O S @ retcr

Figure 8 - NOS3 Running - Server, Sumulators, 42, Flight Software, COSMOS

2. “NOS3 Flight Software” is the last component to start up.
3. Once flight software starts, telemetry can be commanded to be sent to COSMOS and telemetry can be
viewed by:
a. Inthe COSMOS “Command Sender” window:
i. Select “Target:” to be “NOS3”
ii. The only “Command.” is “Enable Telemetry”, so it will automatically populate
iii. Click “Send”

Command Sender

File Mode Help

Iarget: = gommand:

Description: Tell TO_Lab to start sending telemetry

Parameters:
Name Value or State Units 2scr
CMD_ID: 6272 Con

SEQUENCE: 49152 Seq -
Figure 9- COSMOS Command Sending - Enabling Telemetry

b. Inthe COSMOS “Command and Telemetry Server — NOS3 Configuration” window:
i. “Bytes Tx” and “Cmd Pkts” should change from 0 to a positive number

Page | 13

(0033

NOS3 Developer's Manual

ii. “Bytes Rx” and “TIm Pkts” should start counting up as telemetry is received

COSMOS Command and Telemetry Server - STF1 Configuration

File Edit Help

Interfaces | Targets = Cmd Packets Tlm Packets | Routers Logging =@ Status

Interface = Connect/Disconnect Connected? Clients Tx Q Size RxQ Sigé cmd Pkts Tlm Pkts
CFS_INT Disconnect true 0 0 0

COSMOSINT true 0 0 0

Bytes Tx
17

Bytes Rx
242312

00000A005004270081843A80C
2016/05/19 14:49:02.650 ERROR: CFS_INT - Unknown 308 byte packet starting: 08C0C087012D674B0F00045E0000200100000000DEADO
004000000000000000019F3A141 ‘ ‘

Figure 10 - COSMOS Command and Telemetry Server - Showing "Bytes Tx", "Bytes Rx"

c. Inthe COSMOS “Command and Telemetry Server — NOS3 Configuration” window:
i. Click on the “TIm Packets” tab
ii. Scroll down to Target Name “NOS3” and Packet Name “NOS3_NAV_MSG”
iii. Click on “View in Packet Viewer”.

COSMOS Command and Telemetry Server - STF1 Configuration

File Edit Help

Interfaces Targets Cmd Packets | Tlm Packets | Routers = Logging = Status

NOS3 CFE_SB_HKMSG
NOS3 CFE_TBL_HKPACKET
NOS3 CFE_TIME_HKPACKET

View Raw || View in Packet Viewer
View Raw || View in Packet Viewer
View Raw || View in Packet Viewer
NOS3 CFE_TO_LAB_HKTLMPKT View Raw || View in Packet Viewer

NOS3 NOS3_EPS_MSG View Raw || View in Packet Viewer

NOS3 NOS3_NAV_MSG View Raw

View Raw

NOS3 NOS3_SENSORS
SC SC_HKTLM View Raw || View in Packet Viewer

SCH SCH_DIAGPACKET

oo MmN N R AR

View Raw || View in Packet Viewer

2016/06/08 17:35:51.275 INFO: Log File Opened : /home/nos3/Desktop/cosmos/outputs/logs/2016_06_08_17_35_5
1_tlm.bin

2016/06/08 17:39:16.363 INFO: cmd('NOS3 ENABLE_TELEMETRY with CMD_ID 6272, SEQUENCE 49152, SIZE 17, CO
MMAND_CODE 6, DATA "127.0.0.1™)

2016/06/08 17:39:16.363 INFO: Log File Opened : /home/nos3/Desktop/cosmos/outputs/logs/2016_06_08_17_39_1 |
6_cmd.bin

Figure 11 - COSMOS Command and Telemetry Server - Selecting "View in Packet Viewer" for
"NOS3_NAV_MSG"

d. A “Packet Viewer” window will be displayed showing the formatted telemetry of the NOS3
navigation message containing data received by the flight software from the GPS simulator and
packaged and sent down as telemetry. This navigation telemetry packet is configured to be sent
approximately every 10 seconds.

Page | 14

NOS3 Developer's Manual *

Packet Viewer : Formatted Telemetry with Units

File View Help

Target: | NOS3 - | Packet: | NOS3_NAV_MSG
Description: Navigation Application Housekeeping Telemetry Message
Item Value
1 1465407628.238279
2 2016/06/08 17:40:28.238
3 8
4 2160
5 49178
6 71
7 1001262
8 40404
9 o
10 26
11 931
12
13 0.0
14 T742800.0
15 -4184000.0
16 5411000.0
17 -1867.0
18 -5706.0
19 4671.0

ECEF Velocity Z (m/s)

Figure 12 - COSMOS Packet Viewer - NOS3_NAV_MSG

4. To stop all NOS3 software, double click “nos3-stop.sh”.
6 Detailed Installation and Virtual Machine Creation Steps

As mentioned in the background and quick start sections, the key prerequisite to being able to install and run
NOS3 on a user’s computer is the installation of Oracle VirtualBox and Vagrant. Information and installers for
these products can be found at:

1. Oracle VirtualBox — https://www.virtualbox.org/

2. Vagrant - https://www.vagrantup.com/

Following installation of these products, the next prerequisite for installing and running NOS? is to obtain the
nos3 code repository. Currently, that repository has a folder structure like the following:

B - /nos3/ contains the repository at the time of the build locally in the VM.

o /apps - the open source cFS apps
o /cfe - the core flight system (cFS) source files
e /components - the hardware component apps
o /osal - operating system abstraction layer (OSAL), enables building for linux and flight OS
e /psp - platform support package (PSP), enables use on multiple types of boards
e /sims - the component simulators
e /support - all the files needed for ground stations, ION, and installation
o [lait- AlIT database files
/cosmos - COSMOS database files
/installers - installation scripts
/packages - installation packages
/planning - pass planning software

O O O O

Page | 15

https://www.virtualbox.org/
https://www.vagrantup.com/

NOS3 Developer's Manual

nos-

o [VirtualMachine - files directly releated to the VM, such as desktop scripts and launchers
o Vagrantfile - main provisioner file used to generate the VM

[tools - standard cFS provided tools

.gitignore - list of files and directories to be ommitted from git

CMakeLists.txt - top level cmake file to be used from inside the build directory

README.md — Basic information contained within this Guide and about the nos3 repository

IMPORTANT: Internet access is required when installing. Also, please do NOT log in to the virtual machine
until the provisioning process is complete and vagrant has finished. All Figures captured were produced from
a Windows install.

To elaborate on the quick start guide, to create the NOS? virtual machine the steps are:

Open a command terminal and navigate to directory where NOS® was unzipped or the repo was
downloaded.
Modify the Vagrantfile
Run vagrant up from the command prompt within the /mission/support directory
Wait for the installation process to complete
a. At several points the script may seem to hang, but is suppressed due to excessive output
b. Completion is certain once the virtual machine reboots and the command prompt alerts users of
provisioning completion
If the screen has locked, log in using:
a. Username: nos3
b. Password: nos3123!
The initial desktop seen upon login should mimic that displayed below

Page | 16

NOS3 Developer's Manual L d

File Machine View Input Devices Help

B = o 35Pm %

stf1-oipp-demo.sh

B EE @ OO @ rotcy
Figure 13 - Initial Desktop

This concludes the initial installation and log in on the NOS? virtual machine.

6.1 The Vagrantfile and Process

The following section describes the provisioning that is done in the NOS? Vagrantfile using Vagrant.
Vagrantfiles are text files written in a language called Ruby.

6.1.1 Vagrant Plugins

The first items in the Vagrantfile configure optional Vagrant plugins that may or may not be installed in the
user’s environment and which can make virtual machine provisioning easier. These really only benefit the
user if multiple vagrant runs take place. The firstis a plugin called vagrant-vbguest, which attempts to keep
the VirtualBox guest additions software up-to-date if newer versions of VirtualBox are installed on the
user’s machine. The second is a plugin called vagrant-cachier. It attempts to cache packages that are
downloaded from the internet as part of virtual machine configuration and provisioning. Once the
packages are cached, the time consuming process of re-downloading them from the internet can be
avoided. The final plugin, vagrant-reload, aids in the provisioning process and provides a means to reboot
the machine without loosing the current position in the installation.

6.1.2 Base Virtual Machine Configuration
The next item defines the base box or base virtual machine configuration which is used for the virtual

machine. In the case of NOS3, this base box is a very minimal installation of Ubuntu Linux, Version 14
(Trusty). This minimal installation is mainly intended as a server installation with no graphical desktop.

Page | 17

NOS

NOS3 Developer's Manual

When Vagrant starts the NOS3 virtual machine, it automatically creates a synced folder between the host
and the virtual machine. In the host, that synced folder is the directory containing the Vagrantfile
(nos3\support). On the Linux VM, this folder appears as the directory /vagrant. In addition, the Vagrantfile
specifies the creation of an additional synced folder between the host and the virtual machine so that the
other source code and files that are part of the nos3 folder are available on the virtual machine. In the
host, that synced folder is ../, or one level up from where the Vagrantfile exists (nos3). On the Linux VM,
this folder appears as the directory /vagrant_parent.

Finally, the Vagrantfile contains some initial configuration information for the virtual machine, including the
name to give the VM, the fact that the GUI should be displayed, the amount of memory and number of
CPUs to give the VM, the ability to have a DVD drive, and several parameters controlling the graphics
capabilities to assign to the VM.

This concludes the basic configuration of Vagrant and the virtual machine.
6.1.3 Provisioning the Virtual Machine

The next section in the Vagrantfile consists of a shell provisioner. This shell provisioner is a series of Linux
shell commands that are run by the root user in the VM in order to configure it to have the packages, users,
directories, and other configuration settings needed for NOS3. The shell provisioner section consists of the
following subsections.

First, there is a section containing additional package installation commands to install Python, Linux
headers, build tools, debuggers, utilities, GUI toolkits, a minimal desktop environment, web browsers, and
other needed packages. This is followed by the installation of AIT or COSMOS.

After these tools have been installed, the next set of commands installs NOS Engine, additional common
functionality provided by the Independent Test Capability (ITC) team, and the 42 open source visualization
and simulation tool for spacecraft attitude and orbital dynamics.

After that, several configuration settings are altered to increase the number of message queues, to set the
path for finding dynamic libraries, and to keep core dumps locally rather than sending them to the Ubuntu
community.

The next section adjusts the user accounts on the virtual machine. It deletes the Ubuntu user if present,
disables the guest user, and adds the nos3 user.

After that, several preferences are changed for the backgrounds and so that double clicking executable
scripts runs them instead of viewing them in an editor.

Next, the nos3 user’s desktop environment is configured by copying various scripts, symbolically linking
several directories to appear in convenient locations, and installing and configuring COSMOS for the nos3
user.

Page | 18

NOS3 Developer's Manual

Then several Python packages are installed and several scripts copied to the nos3 user’s environment that
support mission planning.

Finally, VirtualBox Guest Additions are installed/updated for the desktop environment if the desktop
environment is running.

6.1.4 Conclusion and References

This concludes an overview of the Vagrantfile which is used to install and configure the NOS® environment.
For more details, please consult the Vagrantfile itself.

6.2 Host Installation

Utilizing the provisioning scripts mentioned above, host installation on Ubuntu 16.04 is possible. These files
can be found at ‘nos3/support/installers/’ and are named ‘nos3_64_*.sh’. These scripts require the specific
package names found for Ubuntu 16.04 in order to properly execute. These provisioner scripts are broken
into minimum, full, and developer levels as mentioned above. Install in order to the level desired. It is
recommended that these scripts be thoughly reviewed prior to running on the host as a lot of file installation
and manipulation is performed.

Page | 19

nos’

NOS3 Developer's Manual

7 Building NOS® Components: Flight Software and Simulators

7.1 Detailed Build Steps

To elaborate on the quick start guide, once the NOS3 virtual machine is created, the steps to build the flight
software and simulators are:

1. Use “vagrant up” from the nos3/support directory or start from the Oracle VM VirtualBox Manager
2. Once the Ubuntu Linux virtual machine desktop greeter appears, log in using:

a. Username: nos3

b. Password: nos3123!

File Machine View Input Devices Help

[En] @) 359PM {%

=@ @ @ @ rhtcrl
Figure 14 - Ubuntu Linux Desktop Greeter

3. Double click “nos3-build.sh”

Page | 20

nos

NOS3 Developer's Manual

File Machine View Input Devices Help

/home/nos3/nos3/tool s/cFS—GromdSysten/Subsystens/cadUtil /senddp,c: In funct
‘SendUdp ™ ;
/huae/ms?a/rm?x/tmls!cFS—GrunBystea/Slbsgsteus!aulltl l/semlkt).c.()d 12’
nlpll . decl n of fun $ i’ [-Wimplicit-function-dec

ecutable cadutil
cmdutil

nos3-run.sh

nos3-stop.sh

stf1-oipp-demo.sh

Figure 15 - Double click "first-nos3-build.sh"

B P @@ [@ (@) riohtcy

3:55PM {'%

4. A terminal window will come up and build the simulator and flight software (this will take quite a few

minutes)

Page | 21

NOS3 Developer's Manual

vagrankt_parent -DBUILD_SIMULATOR=YES -G "CodeBElo

a miccinn_all # #CC anne ake~

Svagrant_parent/cfe/Few/cfecorefsro/fs/cfe_fs_decompress,ci703:18:
comparison of weigned expression >= 0 is always true
[Htautological compare]

inde

Svagrant_parent/cfe/fau/cfe—ooresro/fafcfe_fs_decomwess, ci/0027:
comparizon of unsigned expression >= 0 is always true

ate—rhufts)

Figure 17 - NOS3 Building: Make and Install the Flight Software

Page | 22

NOS3 Developer's Manual

NOS

5.

vagrankt_parent -DBUILD_SIMULATOR=YES -G "CodeBlc

mala miceian_all # #CC anne ak~

1 Built target test_sps

Figure 18 - NOS3 Building: Make and Install Simulators

When this process is complete, a new folder “nos3-build” should exist on the desktop with the built
software.

7.2 The Build Script

Inside the build script, the following items are being executed:

1.

cmake ~/nos3 —DBUILD _FLIGHT=0 -DBUILD _SIMULATOR=YES

CMake is an open-source, cross-platform family of tools designed to build, test and package software.
CMake is used to control the software compilation process using simple platform and compiler
independent configuration files, and generate native makefiles and workspaces that can be used in the
compiler environment of your choice.

In the VM, the source for the flight software and the simulators is located in the directory “~/nos3”. When
CMake runs, it creates makefiles and other build files necessary for compiling, linking, and installing the
flight software and simulators. These files are created in the directory “/home/nos3/Desktop/nos3-build”.

make mission-install
Make gets its knowledge of how to build your program from a file called the makefile, which lists each of
the non-source files and how to compute it from other files. When you write a program, you should write

a makefile for it, so that it is possible to use Make to build and install the program.

When “make mission-install” is run, the flight software is compiled and linked in subdirectories of the
directory “/home/nos3/Desktop/nos3-build” before installation in “/home/nos3/Desktop/nos3-

Page | 23

nos’

NOS3 Developer's Manual

build/linux/linux”. This includes the ”core-linux” executable and “cf” directory which contains the shared
objects, libraries, and configuration tables and files for the flight software.

3. make install

When “make” is run, the simulators are compiled and linked in subdirectories of the directory
“/home/nos3/Desktop/nos3-build”. When “make install” is run, the simulation software executables
and configuration files are installed in the directory “/home/nos3/Desktop/nos3-build/bin” and the
simulation software libraries are installed in the directory “/home/nos3/Desktop/nos3-build/lib”.

Page | 24

nos’

NOS3 Developer's Manual

8 Running NOS3: Standalone Server, Simulators, 42, Flight Software, and COSMOS

To elaborate on the quick start guide, once the NOS? virtual machine is created and the flight software and
simulators are built, all of the software comprising NOS? can be run:

1. Use “vagrant up” from the nos3/support directory or start from the Oracle VM VirtualBox Manager
2. Once the Ubuntu Linux virtual machine desktop greeter appears, log in using:

a. Username: nos3

b. Password: nos3123!

File Machine View Input Devices Help

[En] @) 3:59PM {%

= @ = @ @ @ (8] rightcul
Figure 19 - Ubuntu Linux Desktop Greeter

3. Double click “nos3-run.sh”.

Page | 25

NOS3 Developer's Manual °®

2l

Ubuntu Desktop B = 1) 1209Am &

first-nos3-build.sh

nos3-run.sh

nos3-stop.sh

stﬂ—oipp—&emo.sh

e = @ O @ @ Rightcyl
Figure 20 - Double Click "nos-3-run.sh"

4. The following software will start up:
a. NOS Engine Standalone Server (1 terminal window)

Page | 26

nos-

NOS3 Developer's Manual

@ & @ NOS Engine Standalone Server

File Edit View Search Terminal Help

ry document entity '/home/stfi/Desktop/stfi-build/bin/nos_engine_log_config.xml'
at line 0 col @

Configuration File Name: /[home/stf1/Desktop/stfi-build/bin/nos_engine_server stf
1_simulator_config.json

Loading Plugins: uart
Creating Transports:
fsw: tcp://127.0.0.1:12000
nos3: tcp://127.0.0.1:12001

* STANDALONE SERVER APPLICATION *

- This application may need to be killed manually using CTRL+C

Query Menu:

1 Buses

o Data Nodes
BB Time Clients
4 Time Sender
5 Exit

Selection:

Figure 21 - NOS Engine Standalone Server

The NOS Engine Standalone Server provides the software simulated communication bus
structure that is used by NOS? to connect the flight software with simulated flight hardware.
NOS Engine Standalone Server is installed when the ITC NOS Engine package is installed. The
executable is nos_engine_server_standalone. For NOS?, the server is configured using the file
/home/nos3/Desktop/nos3-build/bin/nos_engine_server_simulator_config.json which
defines plugin protocols and uniform resource identifiers (URIs) for the server.

b. 42 Dynamic Simulator (1 terminal window, 1 GUI window with CubeSat, 1 GUI window with
map)

Page | 27

NOS3 Developer's Manual

Figure 22 - 42 Dynamic Simulator

42 is a general-purpose, multi-body, multi-spacecraft simulation. For NOS3, it simulates the
motion of the STF-1 cubesat. The progression of time for 42 is driven through NOS engine
and 42 provides output ephemeris, attitude, sun vector, magnetic field vector, and other
environmental data to simulators that are part of NOS3. 42 is open source C code. For NOS3
it has been packaged as a zip file which is installed on the virtual machine in the directory
/opt/42. The STF-1 specific configuration files can be found in the directory
/home/nos3/Desktop/nos3-42/N0OS3-42InOut. The main configuration files are the following:
1. Inp_Sim.txt — The main configuration file which defines items such as the environment

(epoch, gravity models, celestial bodies, etc.), spacecraft reference orbits and configuration
files, spacecraft and configuration files, and ground station locations.

2. Orb_LEO.txt — Spacecraft reference orbit file referred to by Inp_Sim.txt. This file specifies the
orbit center (Earth) and refers to the two line element set file which defines the spacecraft
orbit.

3. STF1-TLE.txt—Atwo line element set for STF-1 referred to by Orb_LEO.txt. Atwo-line element
set (TLE) is a data format encoding a list of orbital elements of an Earth-orbiting object for a
given point in time, the epoch. Using suitable prediction formula, the state (position and
velocity) at any point in the past or future can be estimated to some accuracy. The TLE data
representation is specific to the simplified perturbations models (SGP, SGP4, SDP4, SGP8 and
SDP8), so any algorithm using a TLE as a data source must implement one of the SGP models

Page | 28

nos’

NOS3 Developer's Manual

to correctly compute the state at a time of interest. Prior to STF-1 launch the orbital elements
are notional, based on a probable STF-1 orbit.

4. SC_STF1.txt — Spacecraft definition file referred to by Inp_Sim.txt. This file defines labels,
orbit parameters, initial attitude, body parameters, and other parameters specific to the
spacecraft.

5. Inp_IPC.txt — File defining the TCP/IP or file parameters for communicating input and output
to and from 42.

6. Inp_Graphics.txt — File defining the GUI configuration for 42, including what windows to
display, parameters for the point of view, various display elements such as grids and labels,
and other graphic elements properties.

7. There are several other input files which are not used much for NOS3, including Inp_Cmd.txt
(defining a command script for 42), Inp_FOV.txt (defining fields of view), Inp_Region.txt
(defining regions for 42), and Inp_TDRS.txt (defining TDRS satellites for 42).

c. Asrunning AIT has previously been discussed, and is configured differently through yaml made
telemetry pages, this section will focus on the use of COSMOS. COSMOS (GUI windows for Legal
Agreement, COSMOS Command and Telemetry Server — STF1 Configuration, Command Sender,

Launcher)
command Sender
File Help
Target: | STF1 : Command: ENABLE_TELEMETRY — Send
File Help Description: Tell STF1 TO to start sending telemetry
Parameters:
Name Value or State Units Description
cMD_ID: 6212 Command Packet ID
SEQUENCE: 49152 Sequence word
size: 17 size of packet data not including cmd secondary hdr + 1
COMMAND_CODE: 5 Command code
Commanding and Scripting DATA: 127.001
ﬂ@ ’9" Command History: (Pressing Enter on the line re-executes the command)
Oy - J
D D
Command Script Test
Sends Runner Runner
Telemetry
= E . e €OSMOS Command and Telemetry Server - STF1 Configuration
e Ml ol =1 File Edit Help
“?in :@ :_‘lem‘a :‘r?i nterfaces|| Targets Cmd Packets Tim Packets Routers | Logging | Status
Viewer Viewsr Grapher Views Interface Connect/Disconnect Connected? Clients TxQSize RxQSize BytesTx BytesRx CmdPkts TimPkts
Utilities CFS_INT Disconnect true 0 0 0 0 [} 0 [}
384’6%% m@% g H COSMOSINT true 0 0 0 0 [} 0 1
TLM CMD 1

ja comwos Jile coasos It cosvos Jike cosnos
Telemetry Comma ndbo
Extractor Extract

ok Table
Manager

2016/05/23 17:51:41.161 INFO: COSMOSINT Connection Success

2016/05/23 17:51:41.161 INFO: Starting packet reading For CFS_INT

2016/05/23 17:51:41.161 INFO: Connecting to CFS_INT...

2016/05/23 17:51:41.162 INFO: CF5_INT Connection Success

2016/05/23 17:51:41.162_INFO: Startina nacket reading for PREIDENTIFIED. ROUTER

Figure 23 - COSMOS
COSMOS is stated to be “The User Interface for Command and Control of Embedded
Systems”. It is used by NOS? as the ground station command and control system to send
commands to and receive telemetry from the NOS3 flight software. COSMOS is installed as a
Ruby Gem. The configuration for NOS3 has been created by executing “cosmos install
cosmos” on the NOS3 user’s desktop and then copying configuration files which define the
NOS3 commands and telemetry into subdirectories of /home/nos3/Desktop/cosmos.

Page | 29

NOS3 Developer's Manual

d.

e.

Simulators (1 terminal window with a tab for each simulator, including the NOS Time Driver and
the Simulator Terminal)

x _simulator Terminal

Figure 24 - Simulators

Currently, NOS3 starts 2 simulators:

1. GPS Simulator — Simulates a hardware GPS using position and velocity data from 42.

2. Camera Simulator — Simulates the ARDUCAM

3. Simulator Terminal — Provides a terminal to the nos3 user. This terminal can be used to send
commands to other simulators on a special NOS engine command bus and can be used to
report data sent by the simulators on that special bus.

4. NOS Time Driver — This is the simulator component that provides the time source for NOS
engine. NOS engine then distributes time to all clients that need it, including flight software
and any simulator that needs to be aware of the passage of time in the simulated real world.

The simulators are all built and installed from source code as described in the previous
section. The installation location is /home/nos3/Desktop/nos3-build/bin. Various data and
configuration files for the simulators can also be found in that location. Two of the main
configuration files are as follows. The sim_log_config.xml file specifies the level and location
of logging for the simulators. The nos3-simulator.xml file specifies the configuration for the
simulators including common time, logging, and configuration information and information
specific to each simulator. The specific information defines like the name of the simulator
and if it is active, the hardware model (used to find the code plugin) for the simulator, the
connection information (bus and name or address) for the simulator, and any environmental
data provider information. The exact information for each simulator depends on the
simulator, the hardware model, and potentially the data provider.

NOS3 Flight Software (1 terminal window)

Page | 30

Nnos"

NOS3 Developer's Manual

oy

MNOS3 Flight Software
File Edit View Search Terminal Help

2015-812-14:83:20.27933 ES Startup: Loading file: /cf/sen.so, APP: SEN
2015-0812-14:03:20.27980 ES Startup: SEN loaded and created
EVS Portl 55/1/FM 104: Free Space Table verify results: good entries = 3, bad
8, unused = 5
Portl 55f/1/FM 1: Initialization complete: version 2.4.2.0
S Portl 55/1/FM 100: Child Task initialization complete
Portl 55/1/CI_LAB_APP 6: CI: RESET command
Portl 55/1/SCH 1: SCH Initialized. Version 2.
Portl 55f/1/NAV 1: NAV Initialized. Version 1.
Portl 55/1/SC 21: RTS table file load count = @
Portl 55/1/CAM 4: CAM App: RESET Counters Command
Portl 55/1/CAM 1: CAM App Initialized. Version 1.8.8.1
Portl 55/1/SEN 4: SEN: RESET Counters Command
S Portl 55/1/SEN 1: SEN App Initialized. Version 1.0.0.0
S Portl 55/1/5C 9: sSC Initialized. Version 2.4.0.0
S Portl 55/1/HK 1: HK Initialized. Version 2.4.0.0
S Portl 55/1/TO_LAB_APP 1: TO Lab Initialized. Version 2.1.8.8 Awaiting enable
command .
EVS Portl 55/1/CI_LAB_APP 3: CI Lab Initialized. Version 2.1.8.8
EVS Portl 55/1/EPS 1: EPS Initialized. Version 1.0.0.8
2015-0812-14:03:20.38021 ES Startup: CFE_ES_Main entering OPERATIONAL state
EVS Portl 55/1/CFE_TIME 21: Stop FLYWHEEL
EVS Portl 55/1/SCH 18: Multiple slots processed: slot = 95, count = 5

2.0.0
0.0.0

Figure 25 - NOS3 Flight Software

Last, but certainly not least is the NOS? flight software. This is the flight software that will
execute on the single board computer, but cross compiled to run on Linux and to use a
hardware library that connects the flight software to the software only NOS engine busses
with their simulated hardware components instead of the actual flight hardware sensors and
actuators.

Page | 31

nos’

NOS3 Developer's Manual L d

9 NOS® Workflows

Two workflows are currently known to utilize NOS? as a user / developer:
1. Solelyin the VM

2. Develop on host machine, test in VM

Both options make use of the vagrant virtual machine to provide a stable environment for testing. Out of
the box it is assumed that option 1 is to be used. In order to switch to option 2, the following directions must
be followed to properly configure the environment for use with the current scripts:

1. Inthe VM, go to Devices > Share Folders > Shared Folders Settings...

?1 NOS3_v1.02.00 [Running] - Oracle VM VirtualBox — (] X

File Machine View Input Devices Help

vagrant-ubuntu-trusty-32 JEZEENEONY
Shared Folders

Shared Clipboard
Drag and Drop

Insert Guest Additions CD image...

BPEEE @ G rRhtcy

Display virtual machine settings window to configure shared folders

Figure 26 - Shared Folder Settings

2. Add the unzipped ‘nos3’ folder to the list of shared folders

Page | 32

nos

NOS3 Developer's Manual

[En| W) 12:220AM %

vagrant-ubuntu-trusty-32

@ General Shared Folders
System Folders List
B Display Name Path Auto-mount Access
v Machine Folders
@ Storage vagrant \\AC:\Users\JPL\git\stf\stf1\support Full
vagra..cache \\\C:\Users\JP....d\cache\ubuntu\trusty32 Full
{p Audio vagran...arent \\?\C:\Users\JPL\git\stf\stf1 Full
Transient Folders
@ Network l l
€ serial| & Add Share 7 X
(@ UsB Folder Path: [C:\Users\JPL\NOS3_v1.02.00 Vl
(L0l Share¢ Folder Name: [NOS3_v1.02.00 \
\:| Read-only
E] User Ir
Auto-mount
Make Permanent

Cancel Help

Cancel

@@ﬁ@@@@@mghtcm

Figure 27 - Share in NOS3 Folder

3. Archive the current ‘nos3’ folder in the VM

a.

In a terminal enter the following command: ‘sudo mv nos3/* nos3_old/’

4. Mount the newly shared one

a.

In a terminal enter the following command: ‘sudo mount —t vboxsf ~/nos3 ~/nos3’

Once these steps are complete, all changes inside will be reflected outside and vice versa. If the VM is
restarted, the last step of mounting the shared folder will need to be repeated.

Page | 33

nos

NOS3 Developer's Manual

10 Hardware Simulator Framework / Example Simulator

NOS? simulator code has been developed in C++ with Boost and relies on the NASA Operational Simulator
(NOS) engine for providing the software busses, nodes, and other connections that simulate the hardware
busses such as UART (universal asynchronous receiver/transmitter), 12C (Inter-Integrated Circuit), SPI (Serial
Peripheral Interface), and discrete /0 (input/output) signals/connections/busses. NOS engine also provides
the mechanism to distribute time to all the simulators (and to the flight software).

10.1 Background and Supporting Concepts

10.1.1 Abstract Factory Design Pattern

C++ is a programming language that supports the Object Oriented programming paradigm, and within that
paradigm, one of the most powerful design abstractions built on top of that paradigm are design patterns.
The specific design pattern which has been heavily used within the NOS? simulators to make them flexible
and extensible is the Abstract Factory design pattern. This design pattern is described in many places, but
one fairly easy to understand description is in the article “Abstract Factory Step-by-Step Implementation in
C++” at http://www.codeproject.com/Articles/751869/Abstract-Factory-Step-by-Step-Implementation-in-

Cp.

It is this factory design pattern that allows additional simulators to be easily constructed and built as plug-in
libraries, even after the development of the initial NOS® simulator code base. Instead of the shapes and
shape factory in the article, the components in NOS? simulators which are constructed via factories are
hardware models and data providers.

10.1.2 XML Configuration

In addition to using the factory design pattern, each particular simulator must be configured to specify the
hardware model to create. In addition, the hardware model may need parameters for configuring how the
hardware acts. Also, hardware has connections for communication such as discrete 1/0, 12C, or UART, and
so in the simulation the hardware model will need to create software versions of these connections and these
connections may also need configuration data such as bus type, bus name, and bus address. In addition,
some hardware models (such as a GPS or magnetometer simulator) may need environmental data, and so
the hardware model will need to create a data provider which will provide environmental data. The data
provider may need configuration data such as the type of data provider and a filename or host and port.

The configuration for a specific simulation executable will be specified in a file via XML (eXtensible Markup
Language), which will provide a list of simulators that are to be instantiated within that executable. Each
simulator will specify a hardware model, which might have additional configuration parameters. The
hardware model might specify reliance on an optional data provider with data provider configuration
parameters. The hardware model might also specify one or more software communication connections with
connection configuration parameters.

10.2 Implementing Your Own Hardware Model (and Data Provider, and Connections)

The following sections describe how to implement your own hardware model.

Page | 34

http://www.codeproject.com/Articles/751869/Abstract-Factory-Step-by-Step-Implementation-in-Cp
http://www.codeproject.com/Articles/751869/Abstract-Factory-Step-by-Step-Implementation-in-Cp

nos

NOS3 Developer's Manual

10.2.1 Configuration Data Property Tree

If configuration data from the XML file, which is represented as a configuration data property tree, is needed,
it is retrieved using code like the following:

std::string param = config.get ("simulator.<subname>.<subsubname>", “LITERAL”) ;

The following are a few notes regarding this code. First, config is a variable of type const
boost::property tree::ptree& Each hardware model and data provider must provide a
constructor that takes a single parameter of this type (see below), and thus this parameter will be available
to constructor code to perform any necessary configuration and initialization.

Second, when the code above is executed, the data type of the literal *"LITERAL” determines the data type
that the ptree tries to return your parameters as (here it is a literal string, and the variable the value is
assigned to is declared accordingly as a std: : string). Also note that you separate the XML tag names
with periods in the key name to retrieve to indicate nested XML tag levels. Note also that you do not include
the “nos3-configuration” or “simulators” prefixes in the key name (these appear in the default
configuration file); they are stripped off by the SimConfig object which is used to read and parse the
configuration data in the main program. Thus key names should either begin “common.” or “simulator.”
If the key cannot be found in the property tree (which represents the XML), the value *"LITERAL” is used
as the default value.

The following is a list of common keys:

1. common.log-config-file —The name of the configuration file for logging using the ITC Logger
class; you should not normally need to do anything with this.

2. common.absolute-start-time — The absolute start time of the simulation in decimal seconds
from the J2000 epoch.

3. common.sim-microseconds-per-tick—Theinteger number of microseconds the simulation
should advance for every time tick. Note that NOS Engine distributes time on its busses as a count of
ticks. So if your hardware model or data provider receive the number of ticks that represents the
simulation time, it can convert this to real world simulation time using:

double abs_time = absolute start time + (double(ticks * sim microseconds_per tick)) / 1000000.0;

4. simulator.name —The name you gave your simulator; it should agree with the string you put in the
main function (see below).

5. simulator.active — Normally true; if false, then your simulator will not be run when the
SimConfig::run simulator method is called in the main function (see below).

6. simulator.hardware-model.type —The name string for your hardware model.

7. simulator.hardware-model.connections —A list of <connection></connection> tags which
describes the connections that the hardware model has.

8. simulator.hardware-model.data-provider —Information on the data provider (if one is
used and created using the data provider factory).

9. simulator.hardware-model.data-provider.type —The name string for your data provider
(if one is used).

Page | 35

nos

NOS3 Developer's Manual

10.2.2 Hardware Model
The formula for creating a new hardware model is the following:

1. Innamespace Nos3, create a class (e.g. FooHardwareModel) that inherits publicly from
SimIHardwareModel.

2. Create a constructor that takes a const boost::property tree::ptree& parameter which
contains configuration data. Have the constructor retrieve configuration data and save any parameters
and create any connections, data providers, or perform any other initialization that needs done for the
hardware model.

3. Createavoid run (void) method. This method should perform whatever tasks are supposed to be
done when the hardware model is running.

4. Create a name string for your hardware model (e.g. FOOHARDWARE) and add a line like the following to

your source file:
REGISTER HARDWARE MODEL (FooHardwareModel, "FOOHARDWARE") ;

5. If the hardware model uses a data provider, the hardware model could have a member variable of type
SimIDataProvider *, which can be setinthe hardware model constructor based on configuration
data by lines like (assuming the member variable nameis sim data provider)):

std::string dp name = config.get ("simulator.hardware-model.data-provider.type",
"BARPROVIDER") ;
_sim data provider = SimDataProviderFactory::Instance().Create(dp name, config);

10.2.3 Data Provider
The formula for creating a new data provider is the following:

1. Innamespace Nos3, create aclass (e.g. BarDataProvider) that inherits publicly from
SimIDataProvider.

2. Create a constructor that takes a const boost::property tree::ptree& parameter which
contains configuration data. Have the constructor retrieve configuration data and save any parameters
or do any initialization that needs done for the data provider.

3. Createavirtual boost::shared ptr<SimIDataPoint> get data point (void)
const; method... that does whatever is supposed to be done to retrieve (or compute or whatever) a
data point when your data provider is asked for a data point and which returns a pointer to the
retrieved data point. You should also create a class that inherits publicly from SimIDataPoint to
hold the data that you return from the data provider.

4. Create a name string for your data provider (e.g. BARPROVIDER) and add a line like the following to
your source file:

REGISTER DATA PROVIDER (BarDataProvider, "BARPROVIDER") ;

10.2.4 Connections
The general procedure for creating a connection is to create an object that is called a hub (a default

constructed object can be used), then create bus and node objects or a connection object (depending on
the connection type). With the node or connection object, various things can be done to handle the
connection such as registering a callback so that when a message is received on the connection, the

Page | 36

nos

NOS3 Developer's Manual

hardware model can respond to it and send a response. The basics for using a few of the connection types
are described below, but for examples, please consult the example code and existing simulators.

10.2.4.1 Command Connection

The command connection of a simulation hardware model is not a normal connection in the sense of a
connection that the hardware would have to a hardware bus. It is used just to perform out of band
commanding of the simulation itself. One way to perform this commanding is to use the SimTerminal
executable that is part of NOS3. This terminal starts up and registers as a hode on the command bus. It can
then be used to send messages to any other node on the command bus. These messages can be ASCII or
hexadecimal bytes.

The base SimIHardwareModel creates a node on a command bus so that any hardware model simulation
can be commanded. In order for a simulation to perform actions based on commands received on the
command bus, the only thing that needs done in the hardware model is the following:

1. Inthe hardware model class, override the SimIHardwareModel method:
void command callback (NosEngine::Common: :Message msg)

For an example of how data is received by and returned from the hardware model in response to a command,
refer to the command callback method inthe base SimIHardwareModel class.

10.2.4.2 Time Connection
For the hardware simulator to have a notion of time in the real world, it registers a node with NOS Engine as
a time client node. The formula for creating and using a time client node is:
1. Inthe hardware model class, add member variables for the bus and time node, e.g.:
std::unique ptr<NosEngine::Client::Bus> time bus;
NosEngine::Client::TimeClient* _time node;
2. Inthe hardware model constructor:

a. The base SimIHardwareModel class has an existing hub, member variable hub for the bus
to connect to. The connection string for NOS Engine can be retrieved from the XML configuration
data by a call like:
std::string connection string = config.get ("common.nos-connection-
string", "tcp://127.0.0.1:12001");

b. Add a “time” type connection to the XML configuration file something like:
<connection><type>time</type><bus-name>command</bus-name><node-
name>my-time-node</node-name></connection>

c. Retrieve the bus name and node nameinto std: : stringvariables like time bus name and
time node name. For an example of how to do so, please see the example simulator.

d. Create a bus object:

_time bus.reset (new NosEngine::Client::Bus (_hub,
connection string, time bus name));

e. Create atime client node on the bus:

_time node = _time bus-
>get or create time client (time node name) ;

Page | 37

NOS3 Developer's Manual

3. In hardware model methods that need time:

a. To get the number of “ticks” that have elapsed, call:
_time node->get last time ()

b. To convert this to real world time, the SimIHardwareModel has member variables
_absolute start time and sim microseconds per tick (set from data in the
common section of the XML configuration file), and they can be used to compute real world time
by:

_absolute start time + (double (time node->get last time() *
_sim microseconds per tick)) / 1000000.0);
4. To clean up, in the hardware model destructor, call:
_time bus.reset();

10.2.4.3 UART Connection
For hardware that is connected via UART, the formula for the hardware to creating and using a node on the
UART bus is the following:
1. Inthe hardware model class, add a member variable for the UART connection like the following:
std::unique ptr<NosEngine::Uart::Uart> uart connection;
2. Inthe hardware model constructor:

a. The base SimIHardwareModel class has an existing hub, member variable hub for the bus
to connect to. The connection string for NOS Engine can be retrieved from the XML configuration
data by a call like:
std::string connection string = config.get ("common.nos-connection-
string", "tcp://127.0.0.1:12001");

b. Add a “usart” type connection to the XML configuration file something like:
<connection><type>usart</type><bus-name>usart 0</bus-name><node-
port>99999</node-port></connection>

c. Retrieve the bus name and node port into std::string variables like bus name and
node port. For an example of how to do so, please see the example simulator.

d. Create a UART connection object:

_uart connection.reset (new NosEngine::Uart::Uart (hub,
config.get ("simulator.name", "foosim"), connection string,
bus name));
e. Open the connection and set a callback for when the hardware UART is read:
_uart connection->open (node port);
_uart connection->set read callback(
std::bind(&FooHardwareModel: :uart read callback,
this, std::placeholders:: 1, std::placeholders:: 2));
3. Create a hardware model method for the callback (here is where most of the custom work for a specific
hardware model would be done):

a. The signature should be like:

void FooHardwareModel: :uart read callback(const uint8 t *buf, size t

len);

b. To return data, use the UART method:

Page | 38

nos’

NOS3 Developer's Manual

size_t UART::write(const uint8_t *const buf, size_t len);
c. Foran example, consult the example sim code.
4. Inthe hardware model constructor, make the call:
_uart connection->close();

10.3 Writing Your Own Simulator

The following formula describes how to create a simulator using a hardware model (and optionally a data
provider) created using the formulas above:

1. Create a main source file with the following contents:

#include <ItcLogger/Logger.hpp>
#include <sim config.hpp>

namespace Nos3

{
ItcLogger::Logger *sim logger;
}

int
main (int argc, char *argv(])
{
std::string simulator name = "foosim"; // this is the ONLY simulator specific line!

// Determine the configuration and run the simulator

Nos3::SimConfig sc(argc, argv);

Nos3::sim logger->info("main: %s simulator starting",
simulator name.c str());

sc.run_simulator (simulator name);

Nos3::sim logger->info("main: $%$s simulator terminating",
simulator name.c str());

}
2. Change “foosim” to whatever you would like the name of your simulator to be

3. Add XML like the following inside the <simulators></simulators> tagsin the standard

configuration file (the standard configuration file name is nos3-simulator.xml)
<simulator>
<name>foosim</name>
<active>true</active>
<library>libexample sim.so</library>
<hardware-model>
<type>FOOHARDWARE</type>
<connections>
<connection>
<connection-paraml>cpl</connection-paraml>
<t== L0 ==>
<connection-paramN>cpN</connection-paramN>
</connection>
</connections>
<data-provider>
<type>FOOPROVIDER</type>
<provider-paraml>fppl</provider-paraml>
<t== L0 ==>
<provider-paramN>fppN</provider-paramN>
</data-provider>
<other-hardware-parameterl1>0THER-FOO</other-hardware-parameterl>
<l== .. ==>
<other-hardware-parameterN>OTHER-FOO</other-hardware-parameterN>
</hardware-model>
</simulator>

Page | 39

NOS3 Developer's Manual

r](:)ssﬁi

4. Customizing the XML:

a.
b.

The simulator.name should be the same as in your main function in #1.

The simulator.active tag should be true unless you do not want your simulator to run in
which case it should be false.

The simulator.library tag should contain the name of the example simulator shared
object library file (normally 1ib<project>.so where <project> is the project name given
the project in the CMakeLists. txt file; see below)

The simulator.hardware-model . type should be the same as the string you used in the
REGISTER HARDWARE MODEL line above.

The simulator hardware-model data-provider type should be the same as the string you used in
the REGISTER DATA PROVIDER line above.

All other tags are up to you... create your own names and then use the information above for
accessing the data. Note that there are examples in the source code for using several common
connection types such as UART, 12C and the command connection (used to control the simulator
with the simulator terminal). Also note that the command connection is automatically
configured for you in the SimIHardwareModel base class. To have your simulator respond
to commands to it on the command bus, all you need to do is override the
SimIHardwareModel: :command callback method inyour hardware model class (the
default implementation does nothing).

Page | 40

nos’

NOS3 Developer's Manual °

10.4 Example Simulator

Hopefully this introduction is useful in describing the flexible, extensible framework employed in developing
NOS?3 simulators. This introduction has attempted to describe the design pattern used within NOS3 simulators
and described how to add hardware models (and data providers and other supporting items), and put
hardware models together into standalone simulators that can be part of the NOS? simulation environment.

For a complete example, refer to the source code and CMakelists.txt file in the nos3 git repository,
subdirectory sim/example sim/ and refer to the configuration file in the nos3 git repository, file
sim/sim common/cfg/nos3-simulator.xml (see the simulator section with name “example”).
Note also that if a new simulator’s CMakeLists. txt file for a simulator has a project name line like
“project (example sim)” atthe, theline “add subdirectory (example sim)” must be added
to the bottom of the sim/CMakeLists. txt filein the nos3 git repository so that the new simulator will
be built.

Page | 41

nos

NOS3 Developer's Manual

11 42, A Visualization and Simulation Tool for Spacecraft Orbit and Attitude Dynamics

11.1 42 Overview

Some of the simulated hardware components require dynamic environmental data. 42 is an open source
visualization and simulation tool for spacecraft attitude and orbital dynamics and environmental data
developed by NASA’s Goddard Space Flight Center (GSFC). The role of 42 within NOS3 is to provide dynamic
environmental data required by the simulated hardware components.

The presentation material on 42 describes it as a general-purpose, multi-body, multi-spacecraft simulation.
The presentation materials describe the following features of 42 which are of interest to NOS? (other features
are described as well):

1. Multiple spacecraft, anywhere in the solar system

a. Two-body, three-body orbit dynamics (with seamless transition between)
b. One sun, nine planets, 45 major moons

The presentation materials also list the following environmental models which are of interest to NOS?
(other models are described as well):
1. Planetary Ephemerides

a. From Meeus, “Astronomical Algorithms”

b. Good enough for GNC validation, not intended for mission planning
2. Gravity Models have coefficients up to 18th order and degree

a. Earth: EGM96
3. Planetary Magnetic Field Models

a. IGRF up to 10th order (Earth only)
4. Earth Atmospheric Density Models

a. MSIS-86 (thanks to John Downing)

b. Jacchia-Roberts Atmospheric Density Model (NASA SP-8021)

42 uses a collection of input files to control its execution. For NOS3, the main configuration files of interest
are the following:

8. Inp_Sim.txt — The main configuration file which defines items such as the environment (epoch, gravity
models, celestial bodies, etc.), spacecraft reference orbits and configuration files, spacecraft and
configuration files, and ground station locations.

9. Orb_LEO.txt —Spacecraft reference orbit file referred to by Inp_Sim.txt. This file specifies the orbit center
(Earth) and refers to the two line element set file which defines the spacecraft orbit.

10. STF1-TLE.txt — A two line element set for STF-1 referred to by Orb_LEO.txt. A two-line element set (TLE)
is a data format encoding a list of orbital elements of an Earth-orbiting object for a given point in time,
the epoch. Using suitable prediction formula, the state (position and velocity) at any point in the past or
future can be estimated to some accuracy. The TLE data representation is specific to the simplified
perturbations models (SGP, SGP4, SDP4, SGP8 and SDP8), so any algorithm using a TLE as a data source
must implement one of the SGP models to correctly compute the state at a time of interest. Prior to STF-
1 launch the orbital elements are notional, based on a probable STF-1 orbit.

Page | 42

nos

NOS3 Developer's Manual

11. SC_STF1.txt — Spacecraft definition file referred to by Inp_Sim.txt. This file defines labels, orbit
parameters, initial attitude, body parameters, and other parameters specific to the spacecraft.

12. Inp_IPC.txt — File defining the TCP/IP or file parameters for communicating input and output to and from
42.

13. Inp_Graphics.txt — File defining the GUI configuration for 42, including what windows to display,
parameters for the point of view, various display elements such as grids and labels, and other graphic
elements properties.

14. There are several other input files which are not used much for NOS3, including Inp_Cmd.txt (defining a
command script for 42), Inp_FOV.txt (defining fields of view), Inp_Region.txt (defining regions for 42), and
Inp_TDRS.txt (defining TDRS satellites for 42).

11.2 Providing Data to a Simulator from 42

When 42 is run, it writes environmental data to a set of files that have the extension “.42”. The data written
in the “gps_data.42” file can be used by the gps_sim data file provider.

In addition to using files of 42 data, 42 can output data to a TCP/IP socket. This output is controlled by the
input file “Inp_IPC.txt”. To output data to a TCP/IP socket and act as a server (the mode used by NOS3
hardware simulator data providers such as GPSSimData42SocketProvider), the “IPC Mode” should
be set to “TX”, the “Socket Role” should be set to “SERVER” and the “Server Host Name, Port” should be set
to the host name or IP address to use and the TCP socket port number to use.

11.3 Coordinating 42 Time

When data is output to a TCP/IP socket and In order to maintain a consistent real time reference within the
system, 42 has been modified so that it can have its time driven by NOS engine (which also drives hardware
simulator and flight software time as well). To configure 42 to use NOS engine driven time, the “Inp_Sim.txt”
file is modified as follows. Change the “Time Mode” line to have the value “SIMULATION”. Set the “Sim Time
Connection String” line to have the connection string for contacting the NOS Engine Standalone Server. Set
the “Sim Time Bus” line to the NOS Engine bus name to use to retrieve time from.

Page | 43

NOS3 Developer's Manual *

11.4 Data Available from 42

The following data is currently written by 42 to the TCP/IP socket and can be used as environmental data for
data providers: date/time, spacecraft in eclipse/sunlight, spacecraft position in the inertial world frame,
direction cosine matrix for conversion from inertial world frame to rotating world frame, spacecraft position
in the rotating world frame, spacecraft velocity in the inertial world frame, direction cosine matrix for
conversion from spacecraft inertial frame to spacecraft body frame, spacecraft angular velocity, quaternion
for conversion from spacecraft inertial frame to spacecraft body frame, vector from spacecraft to sun in the
inertial world frame, magnetic field vector at the spacecraft in the inertial world frame, and spacecraft
angular momentum.

Page | 44

nos

NOS3 Developer's Manual

12 Flight Software Development, Especially Using cFS

The preferred operating system for use with NOS? is the open-source Core Flight System (cFS) originally
developed by NASA GSFC. This section will describe the method utilized to interface NOS? with cFS, as well
as a generic method to interface with any flight software that can compile for Linux.

12.1 cFS and NOS3

12.1.1 Operating System Abstraction Layer

Core Flight System is the FSW selected for the STF-1 mission partially due to the implementation of the
Operating System Abstraction Layer (OSAL). The OSAL provides an API that allows flight software applications
to be written without operating system (OS) specific calls. When cFS is compiled, the target OS is specified
and the build system includes the proper libraries. This allows the FSW written for the FreeRTOS target to be
built to execute on Linux and the opposite remains true. This makes NOS? an ideal development environment
when using the OSAL Linux target.

12.1.2 Platform Support Package

In addition to the OSAL, cFS includes a Platform Support Package (PSP) that includes libraries that are not OS
specific, but can be reused for a specific flight board, such as memory, clocks, timers, etc. The PSP used for
NOS? is a modified version of the Linux PSP release. In order to control timing in flight software, cFS uses
multiple timers, the main being a 1 Hz timer tick. By replacing the 1 Hz timer provided by Linux with the NOS
Engine time ticker, we can sync the time from the PSP, with the time that other NOS® components are
running.

12.1.3 Hardware Library

The third component of flight software implemented for hardware abstraction is a hardware library (HWLIB).
The HWLIB is used for component specific 1/O calls, such as 12C, UART, etc. The hardware library includes a
single header file, typically provided as drivers from the on-board computer (OBC) manufacturer, that define
the 1/O function calls. When building cFS, the CMAKE build system then selects the driver source
corresponding to the target being built.

As an example, the Clyde Space EPS I/O functionality is well defined in the user’s manual, and
communications are performed over 12C. Using the NanoMind (STF-1 OBC) I12C drivers, a library called epslib.c
is written to communicate over I12C and exercise all of the EPS functionality as described in its documentation.
When compiling for the flight target, the NanoMind driver source code is selected by CMAKE and the
executable can be run on the OBC. When compiling for Linux, the CMAKE build will select the NOS? driver
source code and the executable can be run in the NOS? environment. With either path, the HWLIB and all
code using the HWLIB will remain unchanged, and only the low level drivers will be effected. The diagram
below shows the two path example as it applies to STF-1, where LIBA3200 is the NanoMind source, and
LIBA3200NOS is the NOS3source.

Page | 45

NOS3 Developer's Manual °e®

LEGEND Flight Setup Simulation Setup

CFS Software
NOCS Engine
HW and Drivers

Transportsand 10

OEONE N

Other Software

Library Selected by CMAKE
upon build. No Software
changes required

LIBAS200

GOMSPACE Drivers

UART, I12C, 5P|, GPIO TCP, IPC

Flight Hardware

Simulated HW TCP, IPC Flight HW

Simulated HW IfO to NOS Engine Packager

Linux Drivers

Can add as many HW NOS Clients UART, 12C, 5P1, GPIO
as required by the FSW

Flight Hardware

Figure 28 - Flight and Simulation Targets

12.2 Connecting cFS to NOS?

In order to use NOS? with cFS, modifications are required to the open-source release. The recommended
method for using NOS3 is described in the NOS® User’s Guide, in which these modifications have already been
made. If not using the cFS included with the NOS? release, it is recommended to use the CMAKE build system,
as the legacy build is not currently supported. The necessary changes are described below, where “proj” is
the cFS directory being integrated.

1. Edit the targets.cmake file in the proj/proj_defs folder to include the list of applications to be built. Set
the target name and system as shown below.

SET (TGT1 NAME linux)
SET (TGT1_SYSTEM linux)

2. Copy the toolchain-linux.cmake from the nos3/stf1_defs directory into the proj/proj_defs directory.
3. Copy the nos-linux PSP from the nos3/psp/fsw directory into the proj/psp/fsw directory.
4. Add a proj/proj_apps directory and copy apps from nos3/stf_apps as needed.

Page | 46

nos

NOS3 Developer's Manual

5. Create a proj/proj_apps/libhw or copy the nos3/stf _apps/libstfhw directory.
a. The CMakelists.txt file in nos3/stf_apps/libstfhw will provide a good example of how to include
driver source code as described in section 6.1.3.
b. Add a sim folder to this directory to store the NOS? drivers for 1/0. (See section 6.3 for an
example driver)
6. Copy the needed simulation components from the nos3/sim directory to proj/sim.

12.3 NOS:® Drivers and Other FSW

It is possible to connect NOS? to FSWs other than cFS, although this has not been extensively tested. The two
main requirements are the availability of source code for the I/O drivers, and the ability to compile/run on
Linux. If these two conditions are met, the drivers for the target hardware can be swapped for NOS?® drivers
as described in previous sections.

12.3.1 Writing a NOS? Driver

The NOS? source is the best resource for examples to aid in writing a new NOS? driver. The GPS library,
GomSpace UART driver, and STF-1 NAV (navigation) application will be used in the example described in this
section. For this example, the NAV application is written for cFS, but this application could just as easily be
any other FSW source file.

12.3.1.1 Application and Hardware Library

The application using that is communicating with hardware will require the 1/0 calls to be implemented
exactly as provided by the OBC manufacturer. The NAV application makes certain calls to a Novatel GPS over
the UART from the OBC. Not all of the GPS functionality is necessary to be exercised by the NAV application,
so the low level calls to the UART are wrapped in functions in the GPS library, and the NAV app includes this
library. As an example, the NAV application will be commanded to get the current Position/Velocity/Time
reading, and will make the call GPS_ReadAvailableData as seen in the following code excerpt. Notice the
include statement for the hardware library.

#include “hwlib.h”

/* some code removed for readability see nos3/stf_apps/nav/fsw/src/nav_app.c */

/* Request NAV data */
case NAV_REQ DATA CC:

CFE_EVS_SendEvent (NAV_CMD REQ DATA EID, CFE_EVS DEBUG, "Request NAV GPS Data");

/* todo - fix the 1024 hard coded number */
DataBuffer = (uint8 t *)malloc((1024) * sizeof(uint8 t));

/* Read the GPS data from the UART */
GPS_ReadAvailableData (DataBuffer, &Datalen) ;

GPSSerialiation GPSData = NAV ParseOEM615Bestxyza (DataBuffer, Datalen);

The function GPS_ReadAvailableData in the hardware library is a wrapper for the low level UART calls to the
OBC driver. The function can be seen in the following code excerpt. This library must include the OBC drivers, as
seen in the first line of the excerpt. The bold function calls are from the OBC driver.

Page | 47

nos’

NOS3 Developer's Manual *

#include <dev/usart.h>
/* some code removed for readability see nos3/stf_apps/libstfhw/fsw/src/gps_lib.c */

/*
** Called by any cFS app that wants GPS data.
*/
void GPS ReadAvailableData (uint8 t *DataBuffer, int32 *Datalen)
{
int32 1 = 0;

/* TODO does this need to be sent periodically? */
char gps_cmd[] = "log bestxyza";
usart putstr (GPS_UART, gps_cmd, strlen(gps_cmd));

/* check how many bytes are waiting on the uart */
*Datalen = usart messages_waiting(GPS_UART) ;

/* declare an out buffer to hold that data */
if (*DatalLen > 0)
{
/* grab a byte at a time from the uart and place into the buffer */
while (i < (*Datalen))
{
DataBuffer[i] = usart getc(GPS_UART) ;
+4+1i;

}

else

{
/* OS_printf ("GPS ReadAvailableData(): gps uart data len is 0\n"); */

12.3.1.2 The NOS? Driver

The example described above uses the usart.h header provided with the device drivers for the NanoMind
A3200 being used by STF-1. This header is included by any library making calls to the USART and can be
stored at any location. In this case the file is located at
nos3/nanomind/lib/libasf/gomspace/drivers/include/dev/usart.h.

The functions used by the GPS library in this example are usart_putstr, usart_messages_waiting, and
usart_getc, all of which are defined in nos3/nanomind/lib/libasf/gomspace/drivers/avr32/usart.c. The
usart_getc function will be examined in more detail for this example. The code excerpt below shows the
Nanomind function.

/**

* Return next char in queue
*/

char usart getc(int handle) {

if (usartl[handle] == NULL)
return 0;
char c;
xQueueReceive (usart [handle] ->usart rxqueue, &c, portMAX DELAY);
return c;

Page | 48

nos-

NOS3 Developer's Manual

The function above is used to return the next character from the USART buffer to the calling function. In
order to write a driver for NOS3 this functionality must be mimicked in a new file with the same filename as
the original drivers. The NOS3 USART driver for STF-1 is located at
nos3/stf_apps/libstfhw/sim/libasfnos/gomspace/drivers/avr32/usart, and the usart_getc function defined
in this file is shown in the code exerpt below.

char usart getc(int handle)
{
char c = 0;
Uart *uart = get usart device (handle);
if (uart)
{
/* TODO check return code */
uart_getc(uart, (uint8 t¥*)s&c);
}

return c;

}

The uart_getc functions used in this code is provided by NOS Engine (reference section 3). Details about the
UART, 12C, and SPI NOS plugins can be found in the NOS Engine user’s manual. Typically all functions from
the OBC driver would be implemented in the NOS3 driver, however, only those called by the hardware
library are necessary.

12.3.1.3 Build System

The build system must be able to properly select the correct driver source code based on the target being
compiled. In this case, CMAKE is used by both cFS and NOS? and can accomplish this swap easily. As
described in section 6.2 the CMakelLists.txt file in nos3/stf_apps/libstfhw will provide the best example of
how to include driver source code. A code exerpt from the CMAKE file can be seen below. The
CFE_SYSTEM_PSPNAMIE is set in the toolchain file located at nos3/stf1_defs/toolchain-linux.cmake, and the
call below checks the status of this PSPNAME and includes NOS? include paths and drivers as needed. In
FSW that is not cFS, this IF statement could be edited to check a CMAKE defined value.

IF (CFEisYSTEMiPSPNAME STREQUAL nos-linux)
add_subdirectory (sim)
include directories (${nos-engine-link SOURCE DIR}/include)
message (STATUS "Set NOS Include Directories")

ELSE ()

END IF ()

/* some code removed for readability see nos3/stf_apps/libstfhw/CMakeLists.txt */

IF (CFE_SYSTEM_PSPNAME STREQUAL nos-linux)
set target properties(libstfhw PROPERTIES LINK FLAGS "-LS${CMAKE BINARY DIR}/../sim/1iba3200nos -
L${CMAKE BINARY DIR}/../sim/libasfnos -L${CMAKE BINARY DIR}/../sim/nos ")
target link libraries(libstfhw a3200nos asfnos nos-engine-link)
message (STATUS "Set NOS Link Libraries™)
ELSE ()
message (STATUS "Set FLIGHT Link Libraries")
/* set flight libraries here */
ENDIF ()

Page | 49

NOS

NOS3 Developer's Manual

13 Hardware In The Loop

Currently, four pieces of hardware are supported for communicating with NOS3. These include the Aardvark,
Bus Pirate, FTDI cable, and Raspberry Pi. Each of these will be explained in more detail stating all the
protocols currently tested along with the installation and process to use. The term connector will be used to
signify a program that bridges the gap between NOS Engine and the hardware allowing for this capability.
These connectors do not function as real-time devices and as such a noticeable drop in through-put will be
noted when testing. All files are located at ‘nos3/sim/hwil/’ and are broken down further into configurations
for a specific protocol and the plugins (hardware) to be used.

13.1.1 Aardvark

The Aardvark can only be used if running NOS® on the host machine as pass-through to a virtual machine is
not simply supported. A work-a-round to this has been found that utilizes NETCAT to forward this into the
VM over the network then forward it again into a virtual COM port, but that will not be explained here. The
Aardvark supports both 12C and SPI testing and is a useful tool for checking out hardware without integration
into NOS3. The integration allows for the verification of commands from the FSW to the device and telemetry
returned.

13.1.2 Bus Pirate
The Bus Pirate was the first piece of hardware utilized to provide HWIL capabilities, and use has fallen off in
place of more stable options such as the Aardvark and Wiring Pi libraries. The functionality is essentially the
same as the Aardvark with both 12C and SPI support while purchased at a much lower cost due to the lack of
a functional GUI and professional support. In future releases, this will be revisited and updated to match
current standards.

13.1.3 FTDI Cable

An FTDI cable has been utilized to provide UART protocol support. This has only been utilized with ITAR
simulators involving the Cadet UHF Radio. Due to this fact, it is not currently included in the NOS? release.
More information is available upon request.

13.1.4 Raspberry Pi

The Wiring Pi library is to be used on a Raspberry Pi and has been tested on Rev 2B V1.1 solely. Instructions

for the download and installation of this library are provided at the library website below:
http://wiringpi.com/

Currently, the build process limits the use of the Wiring Pi library to the CAM application supporting the
ArduCAM Mini OV2640 with 12C and SPI protocols. The build flag for the wiring pi must be included in the
‘nos3-build.sh’ script. Simply append -DWIRING_PI=YES’ to the cmake command on line 10.

In order for the connector for find the appropriate library, the LD_LIBRARY_PATH must also be updated. Run
the following commands in a terminal to achieve this:

“sudo su”

“export LD_LIBRARY_PATH=SLD_LIBRARY_PATH:/home/pi/Desktop/nos3-build/lib/”

Page | 50

http://wiringpi.com/

NOS3 Developer's Manual

Note that the appropriate communiations protocols must also be enabled in the ‘raspi-config’ prior to use.

13.1.5 Running the Connectors
In order to run a connector a new terminal must be opened and navigated to the ‘nos3-build/bin’ directory.

From there the connector may be executed as the root user, ‘sudo su’, using the following example
commands:

“./nos_i2c_connector —d 0”
“./nos_spi_connector —d 0”

Note that the device number may change depending on library type. See the help documentation for the
specific connector for details.

Configuration files can be found at ‘nos3/sim/hwil/__connector_type__/cfg/connector.cfg’. These files

contain notes as what each field specifically means. Essentially, the bus, connector hardware, and address
must be specified to allow for communication with NOS Engine.

Page | 51

NOS3 Developer's Manual ®

14 Orbit, Inview, and Power Planning Tool

Several planning tools are envisioned to be created for STF-1 mission operations. The first is the Orbit, Inview,
and Power Planning tool. The role of OIPP will be to execute daily and perform the following tasks:

1. Retrieve the most up to date two-line element set (TLE) data string for the STF-1 CubeSat,
Propagate this element set forward for a number of days in the future, compute in view periods with STF-
1 ground antennas (nominally only NASA Wallops) for a number of days in the future, and determine
sunlight and eclipse periods for STF-1 for a number of days.

It should be noted that the accuracy of all predictions deteriorates as the propagation is performed further
into the future, thus the most accurate data will typically be for the first day in the future predictions and the
least accurate data will typically be for the last day in the future predictions. Thus, the later future data is
used for approximate planning, while the near future data is used for upcoming day(s) operations.

O filest//C/Users/msuder/Desktop/stfL-oipp.htmi M ¢ || Qs wEe 93 s =

[2h Most Visited ™M Inbox - marksuder@t..] TMC Technologies of . @ Inbox - Qutlock Web ., & TMC Technologies - T, & Mark Suder-ITC Conf.. ' Mark's ITC Dashboard ... B IV ITC Git Server 4 ECM W Wikipedia, the free enc... ¥ Google Maps [l 26554 Weather, Curren.. @ WV School Closings M... B school Closings / Delfa..

Satellite STF1 Report I

NOTE: Times displayed on the timeline are for the timezone: EDT

Report from day -1 to day |

Two Line Element Set for Epoch 2017-06-29 16:59:59.999712 (UTC) -
Satellite Name=STF1 Satellite Number=77777. Launch Year=17, Launch Day=077. Launch Piece=A Epoch Year=17. Epoch Day=180.70833333. Mean Motion Dot= 00000000 Mean Motion Double Dot=0. 00000-0, BSTAR=0. 46471-4, Element Number= 5 Inclination= 85.9976. RAAN=
75.0000, Eccentricity=0 0012644 Argument of Perigee=249 2390, Mean Anomaly=287 5576 Mean Motion=15 24071118, Rev at Epoch=7

With inviews for ground station: Wallops Antenna (Radar Road, Temperanceville, VA 23442)
(Latitude 37.861943, Longitude -75.509577, Elevation 3.8, Timezone EDT)
Minimum elevation above the horizen for inview: 10.0

QLESI RISl YESTERDAY, Day -1: 2017-06-29 00:00:00-04:00 to 2017-06-29 23:59:59-04:00

Wallops Antenna - S/C 77777 imiews | o Bl | 2] a] 1 |
SIC 77777 In Sunlight Times 0 1 2 3 4 5 5 7 8 9 10 g 12 13 14 15
12 1 2 3 4 5 6 7 8] 10 1 12 1 2 3 4 5 6 7 8 9 10 1
Al P

ULES SRR gl TODAY, Day 0: 2017-06-30 00:00:00-04:00 to 2017-06-30 235959-04:00

Wallops Antenna Day Shif

Wallops Antenna - S/C 77777 Inviews 0 i | 2]
SIC 77777 In Sunlight Times o 1 2 3 4 5 3 7 8 9 10 1 12 13 14
12 1 2 3 4 5 6 7 8 9 10 1 12 1 2 3 4 5 6 7 8 9 0 1
A Pl

Times Displayed are EDT FUTURE, Day 1: 2017-07-01 00:00:00-04:00 to 2017-07-01 23:59:59-04:00

Wiallops Antenna Day Shift Wallops Antenna Day Shift (2AM-4PM ground station local ime, which is EDT)

Figure 29 - Example 6IPP Report

A link to execute OIPP in the NOS3 VM can be found on the desktop at “stf1-oipp-demo.sh”. Double clicking
the script will run for a while, generating the report “stfl-oipp.html” on the desktop, which will then be
displayed similar to what is shown above in a web browser. The tool can be found in the directory
“/home/nos3/Desktop/planning/OrbitinviewPowerPrediction”. For the demo version, the TLE that is used is
the same one that is used by 42 and is symbolically linked in the directory “/home/nos3/Desktop/planning”.

Page | 52

